High rectifying efficiencies of microtubule motility on kinesin-coated gold nanostructures.
نویسندگان
چکیده
We demonstrate highly efficient rectification of microtubule motility on gold nanofabricated structures. First, we present a novel nanofabrication process for the creation of gold tracks for microtubule motility recessed in silicon oxide. This approach is particularly useful because it enables the use of the well-understood PEG-silane chemistry on SiO2 for the blocking of kinesin, whereas the gold tracks allow possible electrical control. We demonstrate excellent confinement of microtubule motility to the gold nanostructures and that microtubules move on the gold with speeds comparable to that on glass. Second, we present designs of three advanced rectifier geometries. We analyze the microtubule pathways through the geometries, and we demonstrate highly efficient rectification with up to 92% efficiency. As a result, we find that up to 97% of the microtubules move unidirectionally.
منابع مشابه
Electrical docking of microtubules for kinesin-driven motility in nanostructures.
We demonstrate localized electrical control of the docking of microtubules onto engineered kinesin-coated structures. After applying a voltage to a gold electrode, we observe an enhanced transport of microtubules from solution toward the surface and a subsequent increase of the amount of moving microtubule shuttles. Switching off the voltage leads to a partial detachment of microtubules from th...
متن کاملA model for kinesin movement from nanometer-level movements of kinesin and cytoplasmic dynein and force measurements.
Our detailed measurements of the movements of kinesin- and dynein-coated latex beads have revealed several important features of the motors which underlie basic mechanical aspects of the mechanisms of motor movements. Kinesin-coated beads will move along the paths of individual microtubule protofilaments with high fidelity and will pause at 4 nm intervals along the microtubule axis under low AT...
متن کاملMicrotubule motors mediate endosomal sorting by maintaining functional domain organization
Many microtubule motors have been shown to couple to endosomal membranes. These motors include dynein in addition to many different kinesin family members. Sorting nexins (SNXs) are central to the organization and function of endosomes. These proteins can actively shape endosomal membranes and couple directly or indirectly to the minus-end microtubule motor dynein. Motor proteins acting on endo...
متن کاملCharacterization of the microtubule movement produced by sea urchin egg kinesin.
We have used an in vitro assay to characterize some of the motile properties of sea urchin egg kinesin. Egg kinesin is purified via 5'-adenylyl imidodiphosphate-induced binding to taxol-assembled microtubules, extraction from the microtubules in ATP, and gel filtration chromatography (Scholey, J. M., Porter, M. E., Grissom, P. M., and McIntosh, J. R. (1985) Nature 318, 483-486). This partially ...
متن کاملOpposing Microtubule Motors Control Motility , Morphology , and Cargo Segregation during Er - to - Golgi Transport . Anna
We recently demonstrated that dynein and kinesin motors drive multiple aspects of endosomal function in mammalian 2 cells. These functions include driving motility, maintaining morphology (notably through providing longitudinal tension 3 to support vesicle fission), and driving cargo sorting. Microtubule motors drive bidirectional motility during traffic 4 between the endoplasmic reticulum (ER)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 5 6 شماره
صفحات -
تاریخ انتشار 2005